Janina Krawitz
Janina Krawitz

Janina Krawitz is an assistant professor in mathematics education who explores the science of mathematical modelling, motivation, and problem posing.

Vita

October 2023–today

Assistant professor at the Department of Mathematics Education and Computer Science Education of the Paderborn University.

August 2020–September 2023

Lectureship in mathematics at the Albert-Schweitzer-School in Kassel.

November 2019

Graduation as Dr. phil. at the Institute for Didactics of Mathematics and Computer Science at the University of Münster under supervision of Prof. S. Schukajlow.

June 2015–September 2023

Research assistant to Prof. S. Schukajlow at the Department of Mathematics Education and Computer Science Education of the University of Münster.

October 2012–August 2014

Research assistant to Prof. W. Blum at the Department of Mathematics Education of the University of Kassel.

May 2012

First Staatsexamen at the University of Kassel for the teaching profession at gymnasiums in the subjects mathematics and art.

October 2007–May 2012

Study of gymnasium teaching in the subjects mathematics and art at the University of Kassel.

October 2005–September 2007

Study of gymnasium teaching in the subjects mathematics and English at the University of Mainz.

June 2005

General qualification for university entrance at the Georg-Christoph-Lichtenberg-Oberstufengymnasium in Bruchköbel.

August 2002–July 2005

Attended Georg-Christoph-Lichtenberg-Oberstufengymnasium in Bruchköbel.

September 1996–June 2002

Attended Bertha-von-Suttner comprehensive school in Nidderau.

August 1992–July 1996

Attended Friedrich-Ebert elementary school in Schöneck.

Teaching

Paderborn Universität

Winter 2023/2024

University of Münster

Summer 2023

Publications

Monographs

Articles in Scientific Journals

Book and Conference Proceedings

Hochmuth, R., Biehler, R., Blum, W., Achmetli, K., Rode, J., Krawitz, J., Schukajlow, S., Bender, P., & Haase, J. (2021).

Fachwissen zur Arithmetik bei Grundschullehramtsstudierenden ⁠–⁠ Entwicklung im ersten Semester und Veränderungen durch eine Lehrinnovation.

In R. Biehler, A. Eichler, R. Hochmuth, S. Rach, & N. Schaper (Eds.), Lehrinnovationen in der Hochschulmathematik: praxisrelevant ⁠–⁠ didaktisch fundiert ⁠–⁠ forschungsbasiert (pp. 611⁠–⁠644). Springer Spektrum.

Practical Proceedings

Publications without Peer Review